PSI Structural Biology Knowledgebase

PSI | Structural Biology Knowledgebase
Header Icons

Related Articles
Automating NMR Structures
April 2015
Protein Folding and Misfolding: A TRiC-ster that Follows the Rules
March 2015
Virology: Making Sensitive Magic
March 2014
Microbiome: Solid-State NMR, Crystallized
September 2013
Membrane Proteome: Making DNA Nanotubes for NMR Structure Determination
August 2013
Protein-Nucleic Acid Interaction: Inhibition Through Allostery
July 2013
Cell-Cell Interaction: Magic Structure from Microcrystals
March 2013
Membrane Proteome: Soft Sampling
December 2012
Membrane Proteome: Specific vs. Non-specific weak interactions
November 2012
Automatic NMR
September 2012
NMR structure test
September 2012
To structure, faster
August 2012
S is for solubility
June 2012
Blind faith
April 2012
Follow the RNA leader
December 2011
Making invisible proteins visible
October 2011
A fragmented approach to membrane protein structures
September 2011
Molecular replacement by magnetic resonance
August 2011
Solutions in the solution
June 2011
No more labeled lipids
May 2011
Capsid assembly in motion
April 2011
NMR challenges current protein hydration dogma
March 2011
Solving homodimeric structures with NMR
November 2010
CASD-NMR: assessing automated structure determination by NMR
June 2010
Peptidoglycan binding: Calcium-free killing
June 2010
Removing the NMR bottleneck
April 2010
NMR has its wiki way
March 2010
Extremely salty
February 2010
The future of NMR
September 2009
Tips for crystallizing membrane proteins
June 2009
Faster solid-state NMR
May 2009
Powerful NMR
April 2009
Activating BAX
December 2008

Solutions in the solution

SBKB [doi:10.1038/sbkb.2011.24]
Technical Highlight - June 2011
Short description: A high-throughput analysis demonstrates the complementary power of SAXS with other structural techniques.

Comparing of SAXS envelopes (gray) with NMR (left) and X-ray crystallographic (right) structuraldata shows that SAXS is a powerful complementary technique for other structural approaches. Image by Edward Snell and Thomas Grant.

Small-angle X-ray scattering (SAXS) relies on X-ray radiation to generate structural information of proteins in solution. While it can't provide the atomic-level detail that X-ray crystallography provides, it has the advantage of not requiring crystallization of the target protein. This is of great importance, as most proteins targeted to date have not been successfully crystallized. Alternatively, NMR spectroscopy can also provide structural information for proteins that cannot be crystallized, but this technique has limitations, in particular, time constraints and the size of the protein being examined. Thus, SAXS has for some time provided a valid option for proteins that are not easily examined by either NMR spectroscopy or X-ray crystallography. It can also be used to provide additional data for structure refinement, particularly of protein NMR structures.

One distinct advantage of SAXS is its ability to be used in a high-throughput approach, owing to the relatively simple sample preparation required and its rapid data collection. Now, Snell and colleagues (Hauptman-Woodward Medical Research Institute and PSI NESG) have carried out a high-throughput analysis of proteins whose X-ray crystal and/or NMR structures have been determined, demonstrating that SAXS can function as a complementary technique for other structural analyses.

When compared to X-ray crystallography data, SAXS ab initio envelopes generally gave similar values to the radius of gyration (R g) and maximum particle dimension (D max) calculated from the crystal data. Places where the SAXS envelope extended beyond the crystal structure were easily explained by side chains and areas where the crystal structure is disordered, thus providing information that was not available from the crystal structure alone. Similarly, R g and D max values were also in good agreement between SAXS and NMR data, although SAXS D max values tended to be smaller. Occasional discrepancies between the two methods were usually caused by disordered and dynamic residues, as the SAXS envelopes were much less sensitive to extreme changes in protein conformations.

An area for caution was found in the analysis of solutions of mixed oligomers and monomers. Although the authors were able to significantly improve the fit of the data by compensating for a mixture of monomers, dimers and/or tetramers for the proteins examined, they note that this is possible only with knowledge of the protein structure. They caution that ab initio reconstructions should not be used in situations in which the solution is likely to be a mix of oligomers.

Although SAXS lacks the resolution that NMR and X-ray crystallography offer, the ability to use it on virtually any soluble, purified sample makes it a powerful technique for structural analysis. And for those situations in which other structural data is also available, it can greatly enhance our understanding of protein structure in vivo.

Steve Mason


  1. T. Grant et al. Small angle x-ray scattering as a complementary tool for high-throughput structural studies.
    Biopolymers (1 April 2011). doi:10.1002/bip.21630

Structural Biology Knowledgebase ISSN: 1758-1338
Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health